Abstract

Random embedding has been applied with empirical success to large-scale black-box optimization problems with low effective dimensions. This paper proposes the EmbeddedHunter algorithm, which incorporates the technique in a hierarchical stochastic bandit setting, following the optimism in the face of uncertainty principle and breaking away from the multiple-run framework in which random embedding has been conventionally applied similar to stochastic black-box optimization solvers. Our proposition is motivated by the bounded mean variation in the objective value for a low-dimensional point projected randomly into the decision space of Lipschitz-continuous problems. In essence, the EmbeddedHunter algorithm expands optimistically a partitioning tree over a low-dimensional — equal to the effective dimension of the problem —search space based on a bounded number of random embeddings of sampled points from the low-dimensional space. In contrast to the probabilistic theoretical guarantees of multiple-run random-embedding algorithms, the finite-time analysis of the proposed algorithm presents a theoretical upper bound on the regret as a function of the algorithm's number of iterations. Furthermore, numerical experiments were conducted to validate its performance. The results show a clear performance gain over recently proposed random embedding methods for large-scale problems, provided the intrinsic dimensionality is low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.