Abstract

To date, the authors are not aware of an in-depth investigation about embedded applications of the convolutional neural network (CNN) algorithm on small, lightweight, and low-cost hardware (e.g. microcontroller, FPGA, DSP, and Raspberry Pi) applied to detect faults in structural health monitoring (SHM) systems. In this Letter, the authors implement and evaluate both feasibility and performance of an embedded application of the CNN algorithm on the Raspberry Pi 3. The CNN-embedded algorithm quantifies and classifies dissimilarities between the frames representing healthy and damaged structural conditions. In a case study, the CNN-embedded application was experimentally evaluated using three piezoelectric patches glued onto an aluminium plate. The results reveal an impressively effective 100% hit rate. This performance may significantly impact the design and analysis of CNN-based SHM systems where embedded applications are required for identifying structural damage such as those encountered by aerospace structures, rotating machineries, and wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.