Abstract

Poly (methyl methacrylate) (PMMA) is a synthetic polymer commonly used for medical implants in cranioplasty and orthopedic surgery owing to its excellent mechanical properties, optical transparency, and minimal inflammatory responses. Recently, the development of 3D printing opens new avenues in the fabrication of patient-specific PMMA implants for personalized medicine. However, challenges are confronted when adapting medical-grade PMMA to the 3D printing process due to its dynamic viscosity and nonself-supporting characteristics before cured. In addition, the intrinsically exothermic polymerization of MMA brings about bubble generation issues that reduce its mechanical performance harshly. Therefore, in this study, an embedded 3D printing methodology followed by pressurized thermo-curing is proposed and developed: a granular alginate microgel is designed for serving as a supporting matrix when jamming formed between the granules to structurally support the extruded precursor filaments of PMMA-MMA ink during both 3D printing and post-curing; moreover, the autoclave reactor enclosing the alginate matrix and as-sculpted PMMA structures is utilized to generate temperature-dependent pressure, which serves for suppressing the bubbles and solidifying the polymerized MMA during the post-curing process. The 3D printed PMMA is comparably matchable to traditional PMMA castings in terms of their microstructures, density, thermal properties, mechanical performance and biocompatibility. In the future, the proposed embedded 3D printing platform combined with the special post-curing method has great potential for a customized and cost-effective fabrication of patient-specific, complex and functional PMMA implants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.