Abstract
AbstractGiven two finitely generated groups that coarsely embed into a Hilbert space, it is known that their wreath product also embeds coarsely into a Hilbert space. We introduce a wreath product construction for general metric spaces $X,Y,Z$ and derive a condition, called the (${\it\delta}$-polynomial) path lifting property, such that coarse embeddability of $X,Y$ and $Z$ implies coarse embeddability of $X\wr _{Z}Y$. We also give bounds on the compression of $X\wr _{Z}Y$ in terms of ${\it\delta}$ and the compressions of $X,Y$ and $Z$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.