Abstract
This paper proposes a new email classification model using a linear neural network trained by perceptron learning algorithm (PLA) and a nonlinear neural network trained by back propagation neural network (BPNN). A semantic feature space (SFS) method has been introduced in this classification model. The bag of word based email classification system has the problems of large number of features and ambiguity in the meaning of the terms, it will cause sparse and noisy feature space. We use the semantic feature space to address these problems, it converses the original sparse and noisy feature space to semantic-richer feature space, it also helps to accelerate the training speed. Experimental results show that the use of semantic feature space can greatly reduce the feature dimensionality and improve the classification performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.