Abstract

We consider the use of an EM algorithm for fitting finite mixture models when mixture component size is known. This situation can occur in a number of settings, where individual membership is unknown but aggregate membership is known. When the mixture component size, i.e., the aggregate mixture component membership, is known, it is common practice to treat only the mixing probability as known. This approach does not, however, entirely account for the fact that the number of observations within each mixture component is known, which may result in artificially incorrect estimates of parameters. By fully capitalizing on the available information, the proposed EM algorithm shows robustness to the choice of starting values and exhibits numerically stable convergence properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.