Abstract

Interval-censored failure time data arise in a number of fields and many authors have recently paid more attention to their analysis. However, regression analysis of interval-censored data under the additive risk model can be challenging in maximizing the complex likelihood, especially when there exists a non-ignorable cure fraction in the population. For the problem, we develop a sieve maximum likelihood estimation approach based on Bernstein polynomials. To relieve the computational burden, an expectation-maximization algorithm by exploiting a Poisson data augmentation is proposed. Under some mild conditions, the asymptotic properties of the proposed estimator are established. The finite sample performance of the proposed method is evaluated by extensive simulations, and is further illustrated through a real data set from the smoking cessation study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.