Abstract
Longitudinal studies involves repeated observations over time on the same experimental units and missingness may occur in non-ignorable fashion. For such longitudinal missing data, a Markov model may be used to model the binary response along with a suitable non-response model for the missing portion of the data. It is of the primary interest to estimate the effects of covariates on the binary response. Similar model for such incomplete longitudinal data exists where estimation of the regression parameters are obtained using likelihood method by summing over all possible values of the missing responses. In this paper, we propose an expectation-maximization (EM) algorithm technique for the estimation of the regression parameters which is computationally simple and produces similar efficient estimates as compared to the existing complex method of estimation. A comparison of the existing and the proposed estimation methods has been made by analyzing the Health and Retirement Survey (HRS) data of United States.Bangladesh J. Sci. Res. 27(2): 133-142, December-2014
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.