Abstract

ObjectiveThis study tests the elution capabilities of a magnesium phosphate cement (MPC). Study objectives were to quantify the passive release of magnesium ions from MPC and to assess the effects of antibiotic-loaded MPC on bacterial growth and osteoblast viability. MethodsMPC constructs were created and incubated in fetal bovine serum (FBS). At 2, 4, and 17 weeks, a sample was collected for magnesium ion concentration analysis. Control and vancomycin-loaded (vanc) MPC beads were also created. Zone of inhibition was measured after incubating beads on Staphylococcus aureus agar plates for 24 h. Osteoblasts were seeded onto control and vanc beads and cultured for 9 days. Metabolic activity was measured via a resazurin assay. ANOVA with Tukey HSD post-hoc tests and t-tests were performed. ResultsMagnesium ions were eluted at 2 and 4-week time points without significant difference, but demonstrated a significant spike at the 17-week time point. Zones of inhibition for the bacterial species was observed for Vanc-MPC beads, but not control beads. No cytotoxic effects on osteoblasts were noted. ConclusionMPC has potential to improve bone regeneration based on its ability to passively elute magnesium. Additionally, antibiotic-loaded MPC inhibits bacterial growth while avoiding osteoblast cytotoxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call