Abstract

Boron carbide is among the most promising ceramic materials nowadays: their mechanical properties are outstanding, and they open potential critical applications in near future. Since sinterability is the most critical drawback to this goal, innovative and competitive sintering procedures are attractive research topics in the science and technology of this carbide. This work reports the pioneer use of the laser-floating zone technique with this carbide. Crystallographic, microstructural and mechanical characterization of the so-prepared samples is carefully analysed. One unexpected output is the fabrication of a B6C composite when critical conditions of growth rate are adopted. Since this is one of the hardest materials in Nature and it is achievable only under extremely high pressures and temperatures in hot-pressing, the use of this technique offers a promising alternative for the fabrication. Hardness and elastic modulus of this material reached to 52 GPa and 600 GPa respectively, which is close to theoretical predictions reported in literature.

Highlights

  • Boron carbide (B4C) ceramics have been widely considered as high performant ceramic materials thanks to its ultra-high hardness, low density and other promising properties like high elastic modulus, wear resistance and melting point, good thermal stability and somewhat low material cost

  • Our results show that growth velocity has strong effects on the boron carbide structure and stoichiometry

  • For low growth rate of 150 mm/h, the structure fits into a model of combination of 73% B11CE icosahedra and 27% B12 icosahedra with chains of C-B-C or C–C. (E stands for “equatorial” position and is a vacancy). 12% vacancies are found in the boron positions of chains and the final stoichiometry is estimated as B4.45C, which is close to the simple structural formula B4C (Fig. 1A)

Read more

Summary

Introduction

Boron carbide (B4C) ceramics have been widely considered as high performant ceramic materials thanks to its ultra-high hardness, low density and other promising properties like high elastic modulus, wear resistance and melting point, good thermal stability and somewhat low material cost. The laser floating zone (LFZ) technique is a well-established crystal growth method in materials research, able to produce very high melting point materials with extremely high purity and low cost compared to other advanced techniques. In this method, ceramics grown from melt are found to be near fully dense with fine and homogeneous microstructure. The comprehensive understanding of the microstructure, composition and some preliminary mechanical properties of grown boron carbide with variable growth rates are performed

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call