Abstract
Investors' searches for successful forecasting models cause the data generating process for financial returns to change over time, which means that individual return forecasting models can, at best, hope to uncover evidence of ‘local’ predictability. We illustrate this point on a suite of forecasting models used to predict US stock returns, and propose an adaptive forecast combination approach. Most of the time the forecasting models perform rather poorly, but there is evidence of relatively short-lived periods with modest return predictability. The short duration of the episodes where return predictability appears to be present and the relatively weak degree of predictability even during such periods makes predicting returns an extraordinarily challenging task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.