Abstract

We study the effect of annealing and the applied magnetic field from 50 Oe to 20 kOe on the magneto-structural behavior of Ni2FeSi-based Heusler microwires fabricated by using Taylor-Ulitovsky technique. Using the XRD analysis, a strong effect of annealing, manifested as the development of the crystallization process, was observed. The average grain size and crystalline phase content of annealed sample increase from 21.3 nm and 34% to 32.8 nm and 79%, respectively, as-compared to the as-prepared one. In addition, upon annealing, phase transforms into a monoclinic martensitic structure with a modulation of 10 M, which cannot be found in the as-prepared sample. Concerning the magnetic properties, both samples show ferromagnetic behavior below and above the room temperature, where the Curie temperature of Ni2FeSi is higher than the room temperature. The induced secondary phases have a noticeable effect on the magnetic behavior of the annealed sample, where a high normalized saturation magnetization (NMs) and low normalized reduced remenance (Mr = M/M5K), compared to the as-prepared have been detected. Additionally, the coercivity of annealed sample shows one flipping point at 155 K where its behavior changes with temperature. Meanwhile, the as-prepared sample show two flipped point at 205 K and 55 K. A mismatch between field cooling (FC) and field heating (FH) magnetization curves with temperature has been detected for annealed sample at low applied magnetic field. The difference in magnetic and structure behavior of Ni2FeSi microwires sample is discussed considering the effect of induced internal stresses by the presence of a glass coating and the recrystallization and stresses relaxation upon annealing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call