Abstract

BackgroundSalmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS) and identified from mass spectral database searches.ResultsIn this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX.ConclusionUsing a multi-step digest approach the LPI™ technique enables the incorporation of a multi-step protease work flow ensuring enough sequence coverage of membrane proteins subsequently leading to the identification of more membrane proteins with higher confidence. Compared to current sub-cellular fractionation procedures and previous published work, the LPI™ technique currently provides the widest coverage of outer membrane proteins identified as demonstrated here for Salmonella Typhimurium.

Highlights

  • Preparation of outer membrane vesicles A key step for the successful isolation of outer membrane proteins when using the lipid-based protein immobilization (LPI) technology is the generation of outer membrane vesicles (OMVs)

  • Using the database UniProtKB http://www.uniprot.org some of the functions of the outer membrane proteins were deduced. These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane

  • The present study aimed to elucidate the expression of outer membrane proteins in Salmonella Typhimurium using LPITM FlowCells

Read more

Summary

Introduction

Typhimurium) is a major cause of human gastroenteritis worldwide. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Regions of the genome that code for these virulence factors are known as pathogenicity islands. S. Typhimurium possesses two major islands, which are known as Salmonella pathogenicity island 1 (SPI1) and Salmonella pathogenicity island 2 (SPI2). Typhimurium possesses two major islands, which are known as Salmonella pathogenicity island 1 (SPI1) and Salmonella pathogenicity island 2 (SPI2) These islands encode for two different type III secretion systems (TTSS) [4]. The TTSS is responsible for enabling pathogenic Salmonella to transfer virulence factors into the host, allowing it to invade and hijack the host cellular processes [4,5]. The TTSS consists of more than 20 proteins including soluble cytoplasmic proteins, integral membrane proteins and outer membrane proteins [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.