Abstract

The temperature-programmed reaction (TPR) method, high-resolution electron energy loss spectroscopy (HREELS), and molecular beam method were used to elucidate the role surface reconstruction, subsurface oxygen (Osubs), and COads concentration play in the low-temperature oxidation of CO on the Pt(100), Pt(410), Pd(111), and Pd(110) surfaces. The possibility of the formation of so-called hot oxygen atoms, which arise at the surface at the instant of dissociation of O2ads molecules and can react with COads at low temperatures (∼150 K) to form CO2, was examined. It was revealed that, when present in high concentration, COads initiates the phase transition of the Pt(100)-(hex) reconstructed surface into the (1 × 1) non-reconstructed one and blocks fourfold hollow sites of oxygen adsorption (Pt4-Oads), thereby initiating the formation of weakly bound oxygen (Pt2-Oads), active in CO oxidation. For the Pt(410), Pd(111), and Pd(110) surfaces, the reactivity of Oads with respect to CO was demonstrated to be dependent on the surface coverage of COads. The 18Oads isotope label was used to determine the nature of active oxygen reacting with CO at ∼150–200 K. It was examined why a COads layer produces a strong effect on the reactivity of atomic oxygen. The experimental results were confirmed by theoretical calculations based on the minimization of the Gibbs energy of the adsorption layer. According to these calculations, the COads layer causes a decrease in the apparent activation energy E act of the reaction due to changes in the type of coordination and in the energy of binding of Oads atoms to the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.