Abstract

Insulin secretion is regulated by various intracellular signals including Ca2+, ATP, cAMP, and phospholipid-derived signals. Although glucose-induced insulin secretion (GIIS) is the principal mechanism of insulin secretion, its potentiation by cAMP is also critical. Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-IV inhibitors, both of which are new anti-diabetic drugs, act through cAMP signaling in pancreatic β-cells. cAMP is now known to potentiate insulin secretion by both protein kinase A (PKA)-dependent and PKA-independent mechanisms, the latter involving Epac2A, a protein possessing guanine nucleotide exchange factor activity towards the small G-protein Rap. Total internal reflection fluorescence microscopy analysis revealed that Epac2A/Rap1 signaling is required for potentiation of the first phase of GIIS by cAMP. Epac2A also interacts directly and indirectly with the exocytotic machinery and likely forms a cAMP compartment in a specialized region of the pancreatic β-cell. In addition, Epac2A is activated by sulfonylureas (SUs), widely used anti-diabetic drugs. SU-stimulated insulin secretion is reduced both in vitro and in vivo in mice lacking Epac2A. SUs are known to stimulate insulin secretion by closing pancreatic β-cell ATP-sensitive K+ (KATP) channels through binding to the SU receptor SUR1, a regulatory subunit of the channel. These findings demonstrate that Epac2A is a direct target of SUs and that it is required in order for SUs to exert their full effects in insulin secretion. Thus, clarification of the molecular mechanisms underlying Epac2A-mediated insulin secretion can provide a basis for understanding the action of the incretins and SU drugs and further development of anti-diabetic drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.