Abstract

C-nucleosides of 4-methylbenzophenone, 4-methoxybenzophenone, and 2'-methoxyacetophenone were synthetically incorporated as internal photosensitizers into DNA double strands. This structurally new approach makes it possible to study the distance dependence of thymidine dimer formation because the site of photoinduced triplet energy transfer injection is clearly defined. The counterstrands to these modified strands lacked the phosphodiester bond between the two adjacent thymidines that are supposed to react with each other. Their dimerization could be evidenced by gel electrophoresis because the covalent connection by cyclobutane formation between the two thymidines changes the mobility. A shallow exponential distance dependence for the formation of thymidine dimers over up to 10 A-T base pairs was observed that agrees with a Dexter-type triplet-triplet energy transfer mechanism. Concomitantly, a significant amount of photoinduced DNA crosslinking was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.