Abstract
Desalination by solvent extraction is a simple and cost-effective technology to replace current ones. Although desalination solvents are continually developed, there is still a lack of understanding of the mechanism. In this study, we elucidate the solvent extraction desalination mechanism at the atomic level using molecular dynamics(MD) simulations. Three organic solvents octylamine(8A), dibutylamine(DBA), and 2-ethylhexylamine(EHA), which all have the same chemical composition but the amine group at different positions, were used. We simulated the desalination process from the brine-and-organic-solvents-mixing step to the brine-separation step. The MD simulations showed that DBA and EHA formed planar clusters while 8A formed gel clusters. By analyzing MD trajectories, we identified two types of water recovery mechanism, in which DBA and EHA clusters selectively absorb water and 8A traps brine by forming a gel structure. The polar interactions between water molecules and solvents are important driving forces for the absorption of water. To explain the desalination performances of DBA and EHA, morphological characteristics and surface polarity of the clusters were measured. It was found that a higher surface polarity facilitates more water absorption. Partial recovery of the salt ions was attributed to the surface polarity of the organic solvent clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.