Abstract

Vigabatrin (VGB) is a gammaaminobutyric acid-ergic (GABA-ergic) antiepileptic drug (AED) and is one of 2 approved drugs available to treat infantile spasms (IS). The aim of this study is to elucidate conflicting data on the toxic effects of VGB and to obtain detailed information about its possible cytogenotoxic effects in human lymphocytes. For this purpose, in vitro Chromosomal Aberration (CA), Sister Chromatid Exchange (SCE), Micronucleus (MN) tests, and Comet Assay were performed to determine possible genotoxic and cytotoxic effects of VGB. In addition, the binding energy level of VGB to DNA was determined in silico by molecular docking. The highest concentration (80 μg/ml) of VGB increased the SCE, CA, MN and micronucleated binuclear cell (BNMN) frequency significantly compared to the control after 24 and 48 hours of treatment. In the tail density and tail length parameters, the dose-dependent increase was found to be statistically significant compared to the control. At the 40 and 80 μg/ml concentrations of VGB for 48 hours caused a statistically significant increase in both CA/Cell and AC percentages, while MI and NDI decreased only significantly at the highest concentration (80 µg/ml) causing. In the Comet Assay head density, tail density and tail length parameters, the dose-dependent increase was found to be statistically significant compared to the control. Also, the in silico molecular docking analysis showed that VGB interacts with B-DNA close to the threshold binding energy. The lowest negative free binding energy (ΔG binding) was found as −5.13 kcal/mol. In conclusion, all results are evaluated together, it has been determined that VGB has cytogenotoxic effects in vitro and binds to DNA in silico with significant free binding energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call