Abstract
In this study, the binding behavior of β-sitosterol with lysozyme (LZM) was elucidated by surface plasmon resonance (SPR), computational molecular docking and molecular dynamics simulation studies. Chicken egg white lysozyme (CEWLZM) served as a model protein. Tri-N-acetylchitotriose (NAG3) was used in the redocking experiments to generate precise binding location of the protein. β-sitosterol displayed a slightly better binding energy (-6.68±0.04 kcal/mol) compared to NAG3. Further molecular dynamics simulations and MMPBSA analysis revealed that residues Glu35, Gln57-Asn59, Trp62, Ile98, Ala107 and Trp108 contribute to the binding energy. Then, 2.5 mg/mL CEWLZM, 1X PBS buffer (pH 7.4) as running and coupling buffers, 30 µL/min as flow rate were applied for SPR analysis. Serial β-sitosterol injections (20-150 μM) were performed through SPR sensor surface. According to SPR binding study, KD value for β-sitosterol-CEWLZM binding interaction was calculated as 71.34±9.79 µM. The results could provide essential knowledge for nutrition, pharmaceutical science, and oral biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.