Abstract
The nature of the surface species formed through the adsorption of CO2 on amine-grafted mesoporous silica is investigated through in situ FTIR spectroscopy with the aid of 15 N dynamic nuclear polarization (DNP) and 13 C NMR spectroscopy. Primary, secondary, and tertiary amines are functionalized onto a mesoporous SBA-15 silica. Both isotopically labeled 13 CO2 and natural-abundance CO2 are used for accurate FTIR peak assignments, which are compared with assignments reported previously. The results support the formation of monomeric and dimeric carbamic acid species on secondary amines that are stabilized differently to the monocarbamic acid species on primary amines. Furthermore, the results from isotopically labelled 13 CO2 experiments suggest the existence of two carbamate species on primary amines, whereas only one species is observed predominantly on secondary amines. The analysis of the IR peak intensities and frequencies indicate that the second carbamate species on primary amines is probably more asymmetric in nature and forms in a relatively smaller amount. Only the formation of bicarbonate ions at a low concentration is observed on tertiary amines; therefore, physisorbed water on the surface plays a role in the hydrolysis of CO2 even if water is not added intentionally and dry gases are used. This suggests that a small amount of bicarbonate ions could be expected to form on primary and secondary amines, which are more hydrophilic than tertiary amines, and these low concentration species are difficult to observe on such samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.