Abstract

Copper doped magnesium ferrite, Mg1-xCuxFe2O4(x = 0.0–1.0) nanomaterials were synthesized via. sol-gel method sintered at 600 °C for 2 h. The synthesized materials were characterized using modern sophisticated techniques viz. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy, Energy dispersive x-ray spectroscopy (EDS), Vibrating sample magnetometer, UV–visible diffuse reflectance spectra and Impedance analyzer. XRD analysis revealed that all the samples were single phase cubic spinel structure with Fd3m space group and investigated the change in structural parameters with copper concentration. The average crystallite size in the range of 11–23 nm and lattice parameters decrease with increasing Cu doping, due to the cationic distribution and ionic radius. The SEM images show the agglomeration of the particles with spherical like shape and elemental percentage were obtained from EDX. The saturation magnetization showed an increasing trend with increasing Cu concentration at a certain level and then decreases due to the rearrangement of cations at tetrahedral and octahedral sites. The Coercivity, Retentivity and magnetic crystalline anisotropy increase with changing dopant concentration. The magnetic measurements showed enhanced saturation magnetization at certain level (28.96emu/gm) and increase in coercivity up to 1102 Oe with changing dopant concentration. The estimated band gap energy is found to increase with Cu content. The dielectric constant, dielectric loss and impedance show normal behavior of ferrite. The frequency dependent dielectric constant decrease and tan delta shows a relaxation behavior at low frequencies. The synthesized nano Mg–Cu nanoparticles will be applied as humidity sensor, gas sensor, microwave devices and photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.