Abstract

Layered organohalide perovskite films consist of quantum wells with concentration distributions tailored to enhance long-range charge transport. Whereas cascaded energy and charge funneling behaviors have been detected with conventional optical spectroscopies, it is not clear that such dynamics contribute to the efficiencies of photovoltaic cells. In this Letter, we use nonlinear photocurrent spectroscopy to selectively target charge transport processes within devices based on layered perovskite quantum wells. The photocurrent induced by a pair of laser pulses is directly measured in this "action" spectroscopy to remove ambiguities in signal interpretation. By varying the external bias, we determine carrier mobilities for quantum-well-specific trajectories taken through the active layers of the devices. The results suggest that the largest quantum wells are primarily responsible for photocurrent production, whereas the smallest quantum wells trap charge carriers and are a major source of energy loss in photovoltaic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.