Abstract

Graphynes are a class of all-carbon two-dimensional membranes that have been intensely researched for various membrane-based technologies on account of their unique pore architectures. Herein, we report an investigation of the mechanism and energetics of adsorption of noble gases (He, Ne and Ar) on graphdiyne (GDY), the most popular form of graphynes. Two global optimization techniques, namely particle swarm optimization (PSO) and differential evolution are employed to predict the putative global minima configurations of rare gas clusters in the size range 1-30 when adsorbed on GDY. We use the 12-6 Lennard-Jones potential to represent the pairwise non-covalent interactions between various interacting atoms. Initially, the gas atoms adsorb as monolayers on GDY at the centers of the triangular pores until all the triangular pores are filled. This is followed by a second layer formation on top of the hexagonal pore centers or on top of the C-C bonds. The findings from the empirical approach are further validated by performing density functional theory calculations on the predicted adsorbed cluster configurations. We have also looked into the adsorption of noble gas clusters on bilayer GDY systems and have found that the intercalation of gas atoms within the bilayers is feasible. Our study suggests that the stochastic nature of the swarm intelligence technique, PSO can assist in an effective search of the potential energy surfaces for the global minima, eventually enabling large-scale simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call