Abstract

Bran is a nutritious outermost layer of the cereal grain that is removed during milling to curtail the technical problems in end-products. Modification techniques such as enzyme treatments might be an effective way to alter bran morphology and end-use quality. In this study, bran from six cereals (wheat, barley, oat, maize, millet, and sorghum) were enzymatically modified (cellulase and xylanase), and evaluated for morphological properties through scanning electron microscopy, crystallinity through x-ray diffraction and molecular structures through FTIR spectroscopy. Scanning electron microscopy revealed that enzyme modifications caused breakage in bran fibers by hydrolyzing non-starch polysaccharides. X-ray diffraction exhibited that crystallinity of the structures was increased after modifications as enzymes hydrolyzed amorphous regions of cellulose and hemicellulose in bran matrix. Molecular structures studied by FTIR spectroscopy demonstrated absorption in wavelength ranges of 900-3400cm-1 associated to carbohydrates, oligosaccharides, proteins, and non-starch polysaccharides. PRACTICAL APPLICATIONS: Cereal bran creates technical problems for food processors and bakers in terms of grittiness leading to the unacceptability of the product. The bran can be modified using different approaches, such as enzyme modifications. This research will be helpful for the food scientists & researchers and bakers for making choices for preferred method of bran modification. This will also be helpful for cereal scientists for the understanding of structural properties of bran layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.