Abstract

Adipose tissue plays a critical role in energy homeostasis and metabolism. There is sparse understanding of the molecular regulation at the protein level of bovine adipose tissues, especially within different fat depots under different nutritional regimes. The objective of this study was to analyze the differences in protein expression between bovine subcutaneous and visceral fat depots in steers fed different diets and to identify the potential regulatory molecular mechanisms of protein expression. Subcutaneous and visceral fat tissues were collected from 16 British-continental steers (15.5 month old) fed a high-fat diet (7.1% fat, n=8) or a control diet (2.7% fat, n=8). Protein expression was profiled using label free quantification LC-MS/MS and expression of selected transcripts was evaluated using qRT-PCR. A total of 682 proteins were characterized and quantified with fat depot having more impact on protein expression, altering the level of 51.0% of the detected proteins, whereas diet affected only 5.3%. Functional analysis revealed that energy production and lipid metabolism were among the main functions associated with differentially expressed proteins between fat depots, with visceral fat being more metabolically active than subcutaneous fat as proteins associated with lipid and energy metabolism were upregulated. The expression of several proteins was significantly correlated to subcutaneous fat thickness and adipocyte size, indicating their potential as adiposity markers. A poor correlation (r=0.245) was observed between mRNA and protein levels for 9 genes, indicating that many proteins may be subjected to post-transcriptional regulation. A total of 8 miRNAs were predicted to regulate more than 20% of lipid metabolism proteins differentially expressed between fat depots, suggesting that miRNAs play a role in adipose tissue regulation. Our results show that proteomic changes support the distinct metabolic and physiological characteristics observed between subcutaneous and visceral adipose tissue depots in cattle.

Highlights

  • In the past decade, adipose tissue has received increasing attention since fat aids in the regulation of energy balance, and plays an important role in endocrine function [1,2]

  • 637 were classified into a main protein category based on their function and into a cellular location including the nucleus (n=57), cytoplasm (n=365), plasmatic membrane (n=76), extracellular space (n=99) or unknown location (n=40) according to the Ingenuity Knowledge Base using Ingenuity Pathway Analysis Software Package (IPA®) (Figure 1)

  • Proteins were associated with biological functions according to the Ingenuity Knowledge Base (IPA®) and a Right-tailed Fisher’s exact test calculated a p-value determining the probability that each function assigned to that dataset is due to chance alone

Read more

Summary

Introduction

Adipose tissue has received increasing attention since fat aids in the regulation of energy balance, and plays an important role in endocrine function [1,2]. Since fat is an important component in animal productivity and meat quality [8,9], it is necessary to improve our understanding on regulation of adipogenesis in beef in order to provide meat with lipid profiles that are desirable for human consumption. Adipogenesis is an essential biological process in mammals, which involves the development of mature adipocytes from preadipocytes [10]. This process modulates the adiposity of individuals and can be influenced by various factors such as diet, fat depot, age and genetics [11,12,13].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.