Abstract

Mast cells (MCs) are immune cells that are distributed in all tissues throughout the body, and their cytoplasm is rich in granules containing histamine and tryptase. When MCs recognize antigens through IgE bound to FcεRI, they release these mediators by degranulation. Because degranulation induces various type I allergic reactions, such as anaphylactic shock and hay fever, elucidation of the control mechanism of degranulation is important to the development of a therapeutic strategy for allergic diseases. It is known that the antigen-induced degranulation response is fine-tuned by various humoral factors via the activation of G protein-coupled receptors. We found that extracellular ATP enhanced antigen-dependent and -independent MC degranulation via activation of ionotropic P2X4 receptors. P2X4 receptor activation itself had no effect on MC degranulation, but significantly enhanced antigen-triggered degranulation. Stimulation of the P2X4 receptor potentiated the FcεRI-mediated tyrosine kinase signaling cascade. In addition to antigen-induced responses, P2X4 receptor signaling also affected antigen-independent MC responses. Thus, co-stimulation of ATP and Gi-coupled receptor agonists, such as prostaglandin E2 (PGE2) and adenosine, resulted in synergistic degranulation. The significance of P2X4 receptor signaling in allergic and inflammatory responses in vivo was confirmed by impaired responses of antigen-induced passive anaphylaxis and PGE2-induced increases in vascular permeability in P2rx4 knockout mice compared to that of wild-type mice. These results suggest that the P2X4 receptor is a potential therapeutic target for both antigen-dependent and -independent allergic reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call