Abstract

To elucidate chemical linkages between lignin and polysaccharides, the aqueous mixed solutions of coniferin-[α-13C], syringin-[α-13C], D-glucose-[6-2H], and phenylalanine ammonia-lyase inhibitor were injected into a living wheat stalk. Internode tissues with high abundance of 2H-13C were collected. The milled wood lignin, lignin-carbohydrate complex (LCC), and residual LCC (R-LCC) with enrichment of 2H-13C were isolated. The 13C and 2H abundances showed that the lignin and polysaccharides of internode tissues were labeled by 13C and 2H, respectively. Analysis with carbon-13 nuclear magnetic resonance (13C-NMR) showed that ketal and benzyl ether bonds were formed between α-C of lignin and carbohydrates. The R-LCC and LCC were further treated with enzymes to obtain enzymatic degraded R-LCC (ED-R-LCC) and enzymatic degraded LCC (ED-LCC). 13C-NMR spectra of ED-LCC showed that the α-C of lignin side chain was combined with 6-C of carbohydrates by ether, ester, and ketal linkages. 1H-NMR differential spectra of ED-LCCs revealed an LC linkage of benzyl ether bond. Glucan-lignin (En-R-GL) and xylan-lignin (En-R-XL) complexes were separated from ED-R-LCC by ionic liquid. A part of lignin α-C was linked to cellulose 6-C by benzyl ether and α-ketal linkages. 13C-NMR spectra of En-R-XL showed there were α-benzyl ether and α-ketal bonds between lignin and xylan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.