Abstract

Antihypercholesterolemic agent phomoidride (PMD) B has a highly elaborated bicyclo[4.3.1]deca-1,6-diene core scaffold derived from dimeric anhydride with a nine-membered ring. This report elucidated the late stage transformation from an anhydride monomer to PMD B through the heterologous expression of three enzyme genes, TstC, TstK, and TstE. Additional in vitro studies of TstK and TstE provided evidence on the formation of PMD via dimerization, three-step oxidation, and unusual methylation-triggered bicyclic ketal formation. Elucidation of the function of cyclase TstC prompts us to examine the cyclization mechanism of TstC by using a computational approach. Computational analytical data on PMD and structurally related glaucanic acid indicated that the initial decarboxylation of monomer results in enolate and subsequent double Michael reactions of another monomer, followed by an optional aldol reaction proceeding in an endo-selective manner to give cycloadducts, supporting the fact that the starting orientation of two monomers is directly transferred to the product configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call