Abstract

The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 µm in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 µm spot diameter and 0.6 m min−1 welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min−1 with fibre laser beams of 360 µm or 560 µm in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min−1 welding speed and 360 µm spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call