Abstract

In recent years, blast disease caused by Magnaporthe grisea, an ascomycete fungus is becoming a serious threat to pearl millet crop in India and worldwide. Due to the increase in virulent races of pathogen, blast disease management strategies seemed to be very limited. Hence, unraveling the occurrence of blast isolates across India and understanding their virulence and genetic relatedness using molecular markers are the key objectives of this study. From Farmer's field survey we have evidenced variability in blast pathogen across India by recording 10.6 to 7.9 disease severities. A fair to good variation in cultural and conidial characters were also noticed for 17 field isolates. The identity of 17 isolates was confirmed as Magnaporthe grisea by internal transcribed spacer (ITS) region. Based on 12 host differential virulence reactions, five isolates BgKMg1, BdmMg2, MtgMg11, JprMg16 and JmnMg17 recorded highly susceptible (>5 grade) to nine differentials used in the study. While, host differentials ICMB95444, ICMR06222, ICMR11003, IP21187 and ICMV155 found effective for screening virulence of blast disease. Furthermore, genetic relatedness assessed by ITS, inter simple sequence repeats (ISSR) and simple sequence repeats (SSR) markers produced high degree of polymorphism and was able to distinguish the virulence pattern of 17 isolates that correlated with phenotypic screening. Among markers, clustering of isolates within groups was significantly different with remarkable genetic similarity coefficient and bootstrap values. Overall, these results confirm a significant morphological and genetic variation among 17 isolates, thereby helping to elucidate the virulence of pearl millet blast populations in India that could avoid breakdown of resistance and assist breeding improved pearl millet cultivars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.