Abstract

Research on DNA methylation on N6-adenine (6mA) in eukaryotes has received much recent attention. Recent studies have generated a large amount of 6mA genomic data, yet the role of DNA 6mA in eukaryotes remains elusive, or even controversial. We argue that the sparsity of DNA 6mA in eukaryotes, the limitations of current biotechnologies for 6mA detection and the sophistication of the 6mA regulatory mechanism together pose great challenges for elucidation of DNA 6mA. To exploit existing 6mA genomic data and address this challenge, here we develop a deep-learning-based algorithm for predicting potential DNA 6mA sites de novo from sequence at single-nucleotide resolution, with application to three representative model organisms, Arabidopsis thaliana, Drosophila melanogaster and Escherichia coli. Extensive experiments demonstrate the accuracy of our algorithm and its superior performance compared with conventional k-mer-based approaches. Furthermore, our saliency maps-based context analysis protocol reveals interesting cis-regulatory patterns around the 6mA sites that are missed by conventional motif analysis. Our proposed analytical tools and findings will help to elucidate the regulatory mechanisms of 6mA and benefit the in-depth exploration of their functional effects. Finally, we offer a complete catalogue of potential 6mA sites based on in silico whole-genome prediction. The role of DNA methylation on N6-adenine (6mA) in eukaryotes is a challenging research problem. Tan et al. develop a deep-learning-based algorithm to predict 6mA sites from sequences at single-nucleotide resolution, and apply the method to three representative model organisms. The method is further developed to visualize regulatory patterns around 6mA sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.