Abstract

Classical crystallography is based on the translational periodicity of crystals and the analysis of discrete Bragg reflections. However, it is inadequate for determining disordered structures, of which the diffuse scattering is vital to evaluate the disorder level. The correlated disorder of IM-18 presents as zigzag chains arranged in translational periodicity and the double four-ring units randomly distributed along two dimensions. Supercell models regulated by multiple probabilities were systematically built to simulate the single-crystal and powder X-ray diffraction patterns in order to ascertain the specific disorder configuration in the single-crystal or polycrystalline samples of IM-18. The presence of defects in the polycrystalline sample was proved by combining 29Si magic angle spinning (MAS) NMR and 1H-1H double quantum MAS NMR spectra, and was quantitatively explored by the simulation method. The method could also elucidate other disordered structures in polycrystalline or single-crystal samples, despite the presence of defects or multidimensional disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.