Abstract

In this article, the binding interactions between bovine serum albumin (BSA) and three 1-alkylsulfonates, namely sodium 1-dodecanesulfonate, sodium 1-decanesulfonate, and sodium 1-octanesulfonate, have been thoroughly investigated. The study employed various experimental techniques such as isothermal titration calorimetry (ITC), steady-state fluorescence spectroscopy (SF), circular dichroism spectroscopy (CD), and molecular dynamics-based simulations. The objective was to understand the influence of the alkyl chain length of the investigated ligands on several aspects, including the strength of the interaction, the stoichiometry of the resulting complexes, the number of BSA binding sites, and the underlying mechanisms of binding. Notably, the study also demonstrated that sodium dodecyl sulfate (S12S) can serve as an effective site marker for BSA when studying ligands with similar structural and topological features. These findings may have significant implications for enhancing our understanding of the interactions between small amphiphilic molecules and proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.