Abstract
Coxsackievirus B3 (CVB3), a serotype of enterovirus B, causes hand, foot, and mouth disease; pericarditis; and myocarditis. A benzene sulfonamide derivative is reported to have inhibitory activity against wild-type (WT) and eight mutants of the viral capsid of CVB3. Furthermore, the crystal structure of the complex formed between WT viral capsid of CVB3 and the derivative revealed binding at a novel druggable interprotomer pocket. We investigated how the compound could be a potent inhibitor of both WT and some mutants of CVB3 by determining binding to the viral capsid and the interaction energy with the binding pocket based on molecular dynamics simulations and density functional theory. We found that hydrogen bonds, pi–pi interactions, and electrostatic interactions are the key interactions with a protomer unit of CVB3 viral capsid. The residual interaction energy determined using density functional theory revealed key binding with VP1:Arg234 and a residue in the nearby VP1 unit (VP1’:Arg219). These results explain why the compound is still a potent inhibitor against eight mutants. Moreover, the decreased inhibitory activity for some mutants could be explained by the calculated binding energy and the highest occupied molecular orbital and lowest unoccupied molecular orbital energy. The results will be helpful for the development of drugs resistant to CVB3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.