Abstract
The rational development of aqueous-phase catalysts is limited by a lack of fundamental understanding of the precise role of solvent molecules in the reactions. For deeper insight into these general processes, we carried out a detailed theoretical study of NaBH4 hydrolysis to unravel a plethora of complex reaction pathways. Our study involves no a priori assumptions about individual reactant or product states, which are identified through a combination of ab initio molecular dynamics and nudged elastic-band methods. Snapshots of our computational modeling identify canonical reaction mechanisms whereby the aqueous environment facilitates proton and hydride transfers as well as solvent rearrangements extending across multiple layers of solvation. In addition to providing the most comprehensive computational study of NaBH4 hydrolysis to date, the mechanisms presented herein are relevant for characterizing other reaction processes involving coupled proton-hydride reactions influenced by subtle changes in reaction environments (e.g., those that would be encountered in hydrogen evolution, water oxidation, and CO2 conversion processes). This novel and unbiased quantum chemistry modeling approach shows great promise for computational elucidation of homogeneous phase chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.