Abstract
A reaction cycle for redox-mediated, Ni-catalyzed aryl etherification is proposed under both photoredox and electrochemically mediated conditions. We demonstrate that a self-sustained Ni(I/III) cycle is operative in both cases by chemically synthesizing and characterizing a common paramagnetic Ni intermediate and establishing its catalytic activity. Furthermore, deleterious pathways leading to off-cycle Ni(II) species have been identified, allowing us to discover optimized conditions for achieving self-sustained reactivity at a ∼15-fold increase in the quantum yield and a ∼3-fold increase in the faradaic yield. These results highlight the importance of leveraging insight of complete reaction cycles for increasing the efficiency of redox-mediated reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.