Abstract

Vast efforts are directed today toward the development of efficient, green methods for the degradation of toxic compounds, especially those that are water-soluble. Though Fenton reactions are commonly used in wastewater treatment, their mechanisms and the active species involved remain obscure due to their mechanistic complexity. In this work, the mechanism of an electro-Fenton reaction, in which a FeLaO3 catalyst was entrapped in a sol-gel matrix, was studied in the presence of azo dyes as the model for toxic compounds. Increased knowledge about this important mechanism will confer greater control over related processes and enable a more efficient and green degradation method. DFT calculations showed that in the presence of Fe(IV), OH are formed under acidic conditions and that both the iron and hydroxyl species function as oxidation reagents in the degradation process. The structure of the formed Fe(IV) embedded in the solid matrix was not the typical tetravalent structure. Entrapment in the sol-gel matrix stabilized the catalyst, enhanced its efficiency and enabled it to be recycled. Sol-gel matrices constitute a simple method for the degradation of stable and toxic compounds under extreme pH conditions. The findings of this study are highly significant for the treatment of typically acidic wastewaters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.