Abstract

Issues of stability and bifurcation phenomena in vehicle lateral dynamics are presented. Based on the assumption of constant driving speed, a second-order nonlinear lateral dynamics model is obtained. Local stability and existence conditions for saddle-node bifurcation appearing in vehicle dynamics with respect to the variations in front wheel steering angle are then derived via system linearization and local bifurcation analysis. Bifurcation phenomena occurring in vehicle lateral dynamics might result in spin and/or system instability. A perturbation method is employed to solve for an approximation of system equilibrium near the zero value of the front wheel steering angle, which reveals the relationship between sideslip angle and the applied front wheel angle. Numerical simulations from an example model demonstrate the theoretical results

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.