Abstract

Berberis baluchistanica Ahrendt is a medicinal plant known to have potential for the treatment of various diseases. In the present study, the ethanolic extracts of the bark, leaves, and roots of B. baluchistanica plant were evaluated for in vitro antimicrobial, anti-leishmanial, anticancer, and anti-inflammatory activities. The antibacterial and antifungal activities were determined by agar mix and agar well diffusion method. All extracts showed potential activity against the target bacteria (Bacillus subtilis, Bacillus licheniformis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Rhodococcus erythropolis, Salmonella typhi, and Staphylococcus aureus) and fungal strains (Aspergillus flavus, Aspergillus niger, and Mucor mucedo). S. aureus proved to be the most sensitive strain for each extract, with a maximum zone of inhibition for bark at 23 ± 0.12 mm, for leaves at 22 ± 0.36 mm, and for root extracts at 20.21 ± 0.06 mm). The minimum inhibitory concentration values of B. baluchistanica bark, leaves, and roots for different target bacterial strains ranged from 1.56 to 25 mg ml–1, and the minimum bactericidal concentrations were in the range of 3.12 to 25 mg ml–1, respectively. The root extract possessed potent antifungal activity against A. flavus with 83% of growth inhibition, A. niger with 80%, and M. mucedo with 73%. The bark extract was found active against M. mucedo with 86% of inhibition, followed by 70% against A. flavus and 60% against A. niger. The leaf extract showed a significant response by 83% inhibition against M. mucedo, followed by A. flavus and A. niger with 73 and 72% inhibition, respectively. In an anti-leishmanial bioassay, the inhibitory concentration (IC50) was observed for each extract against Leishmania major. The bark showed good activity (IC50 = 4.95 ± 0.36 mg/ml), followed by the roots (IC50 = 7.07 ± 0.18 mg/ml) and the leaves (IC50 = 8.25 ± 0.29 mg/ml). An evaluation of anticancer activity was done by using MTT cell assay against HeLa cell line. Upon comparing the values of each extract to the standard, it was revealed that the ethanolic bark extract showed the highest anticancer activity with IC50 = (12 ± 0.15 μg/ml), followed by the roots (14 ± 0.15 μg/ml) and the leaves (17 ± 0.21 μg/ml), respectively. The anti-inflammatory assay was undertaken by the inhibition of albumin denaturation activity, proteinase inhibitory activity, and heat-induced hemolysis activity. The IC50 value for protein denaturation of the bark was IC50 = 0.64 ± 0.25 mg/ml, followed by the roots (0.67 ± 0.21 mg/ml) and the leaves (0.73 ± 0.13 mg/ml). The proteinase inhibitory activity of the bark extract was IC50 = 0.55 ± 0.12 mg/ml, followed by the leaves (0.62 ± 0.23 mg/ml) and the roots (0.69 ± 0.15 mg/ml), respectively. For heat-induced hemolysis assay, the bark showed the lowest IC50 value (0.48 ± 0.15 mg/ml) compared to the leaves (0.52 ± 0.35 mg/ml) and the roots (0.58 ± 0.05 mg/ml) of the plant. All analyzed parts of the B. baluchistanica plant showed significant biological activities which make the plant medicinally important and a good candidate for the isolation of antimicrobial, inflammatory, and anticancer compounds. Further studies may lead us to determine the active compounds responsible for the biological activities of the plant extracts.

Highlights

  • The use of medicinal plants as an alternative therapy for the prevention and treatment of various infectious diseases is an ancient practice (Tareen et al, 2016)

  • The bark, leaf, and root extracts of the B. baluchistanica plant was tested for its antibacterial properties against different bacterial strains

  • All the extracts were found active against the selected target bacteria, except K. pneumonia that was resistant to root extracts (Figure 1)

Read more

Summary

Introduction

The use of medicinal plants as an alternative therapy for the prevention and treatment of various infectious diseases is an ancient practice (Tareen et al, 2016). The curative properties of various medicinal plants have been known to treat human and animal diseases. It is estimated by the World Health Organization (WHO) that about 80% of the world’s population still rely on traditional medicine for their primary healthcare needs due to their easy availability (Dos Santos et al, 2021). Medicinal plants with bioactive components having antibacterial, antifungal, and antioxidant properties are used for the treatment of various infections. These natural antimicrobial agents have great medicinal potentials because of the increasing resistance to the usual antibiotics and drugs (Pervez et al, 2019)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.