Abstract
Cell-penetrating peptides (CPPs) have been widely used as vehicles for delivering therapeutic molecules to the site of action. Apart from their delivering potential, the biological effects of CPPs have not been explored in detail. JTS-1 is a CPP that has been reported to have gene delivery functions, although its biological role is yet to be determined. Hence, in this study, we revealed the biological mechanism such as its uptake mechanism and immunogenic potential and function using primary human tenon fibroblast (TF) cells collected from patients undergoing glaucoma trabeculectomy surgery. Our results showed that the JTS-1 peptide has an α-helical structure and is nontoxic up to 1 μM concentration. It was found to be colocalized with early endosome (Rab5), recycling endosome (Rab7), and Rab11 and interacted with major histocompatibility complex (MHC) class I and II. The peptide also affected actin polymerization, which is regulated by cofilin phosphorylation and ROCK1 localization. It also inhibited TF cell proliferation. Therefore, the JTS-1 peptide could be used as a possible therapeutic agent for modifying the fibrosis process, where TF proliferation is a key cause of surgery failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.