Abstract

An in‐depth study of the supramolecular copolymerization behavior of N‐ and C‐centered benzene‐1,3,5‐tricarboxamides (N‐ and C‐BTAs) has been conducted in methylcyclohexane and in the solid state. The connectivity of the amide groups in the BTAs differs, and mixing N‐ and C‐BTAs results in supramolecular copolymers with a blocky microstructure in solution. The blocky microstructure results from the formation of weaker and less organized, antiparallel hydrogen bonds between N‐ and C‐BTAs. In methylcyclohexane, the helical threefold hydrogen‐bonding network present in C‐ and N‐BTAs is retained in the mixtures. In the solid state, in contrast, the hydrogen bonds of pure BTAs as well as their mixtures organize in a sheet‐like pattern, and in the mixtures long‐range order is lost. Drop‐casting to kinetically trap the solution microstructures shows that C‐BTAs retain the helical hydrogen bonds, but N‐BTAs immediately adopt the sheet‐like pattern, a direct consequence of the lower stabilization energy of the helical hydrogen bonds. In the copolymers, the stability of the helical aggregates depends on the copolymer composition, and helical aggregates are only preserved when a high amount of C‐BTAs is present. The method outlined here is generally applicable to elucidate the copolymerization behavior of supramolecular monomers both in solution as well as in the solid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call