Abstract

Thiolate-protected Au nanoclusters (AuNCs) have been widely studied in areas of catalysis, biosensors, and bioengineering. In real applications, e.g., catalytic reactions, the thiolate groups are normally partially detached. However, which of the thiolate groups are easily detached and how the detachment of the ligands affects the geometries and electronic structures of the Au nanoclusters have been rarely studied. In this work, we employed the density functional theory calculations as well as the molecular orbital analysis to explore the detachment effect of the ligands using nine thiolate-protected AuNCs as examples. Our results showed that there existed a nearly linear relationship between the averaged detachment energies and the numbers of Au atoms in the motifs. Detaching longer motifs normally required more energies owing to the stronger aurophilic effects. For detaching a full motif, based on the structure decomposition via the grand unified model, analysis on the inner Au core indicated that the change in Au-Au bond length was more sensitive for the inter-block compared to the intra-block. The detachment of the -SH fragment generally needs less energy and brings less structural deformations when compared to the removal of a full motif. Molecular orbital analysis showed that the relative energies of the HOMO orbitals were elevated, which led to the narrow down of the HOMO-LUMO gap. This work provides a primary description of the correlation of the ligands' detachment with the relative stabilities and structures of the AuNCs, which would be beneficial for establishing the structure-property relationship of AuNCs in real applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call