Abstract

In order to examine the impact of Cu(II)-Cr(VI) co-pollution in printing and dyeing wastewater on the aniline biodegradation system (ABS), loading experiments were conducted on ABS at varying concentrations of Cu(II)-Cr(VI). The synergistic stress imposed by Cu(II)-Cr(VI) accelerated the deterioration of the systems, with only the C2-3 (2 mg/L Cr(VI)-3 mg/L Cu(II)) sustaining stable operation for 42 days. However, its nitrogen removal performance remained significantly impaired, resulting in a total nitrogen (TN) removal rate below 40%. High-throughput sequencing analysis revealed a stronger correlation between Cr(VI) and microbial diversity compared to Cu(II). Metagenomic sequencing results demonstrated that Cu(II) emerged as the dominant factor influencing the distribution of dominant bacteria in C2-3, as well as its contribution to contaminant degradation. The complex co-pollution systems hindered aniline degradation and nitrogen metabolism through the combined bio-toxicity of heavy metals and aniline, thereby disrupting the transport chain within the systems matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call