Abstract

AbstractConjugated polymers have gained momentum as serious contenders for next‐generation flexible electronics, but their susceptibility to water represents a major problem. Atmospheric water is ubiquitous and its inadvertent diffusion into polymeric devices generates charge carrier traps, reducing their performance and stability. A good understanding of the physical processes associated with the presence of water is therefore necessary in order to be able to suppress the related trapping events and enable stable, high‐performance devices. Here, evidence is shown that water introduces traps in the bandgap of organic semiconductors and the impact of these traps on the electrical properties of polymer organic field‐effect transistors (OFETs) based on indacenodithiophene‐co‐benzothiadiazole (IDT‐BT) is investigated. Monitoring device parameters and the trap density of states (t‐DOS) during moisture extrication reveals the existence of two types of water‐related traps: shallow traps originating from water inhabiting the voids of the polymer film and deeper traps arising from chemisorbed water present at the dielectric/polymer interface. A trap passivation method based on flame‐annealing is introduced to eliminate the interfacial traps. As a result, stable OFETs, with threshold voltage shifts less than ΔVth = −0.3 V and constant mobilities (<10% variation) after three months of storage, are fabricated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.