Abstract

Deep eutectic solvents (DESs) constitute a rapidly emerging class of sustainable liquids that have been widely studied and employed in chemical separations, catalysis, and electrochemistry. The unique physicochemical and solvation properties of DESs can be highly tailored by choosing the appropriate hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). Understanding the role of the HBA and HBD on the multiple solvation interactions in DESs is important to enable their judicious selection for particular applications. This work constitutes the first study to exploit chromatography to measure solute–solvent interactions of DESs using a wide array of known probe molecules. The constituent components of 20 DESs, formed by ammonium and phosphonium-based salts and carboxylic acids, are systematically modulated to delineate the contribution of the HBA and HBD toward individual solvation properties. Solute–solvent interactions measured in this study are used to interpret and explain the performance of DESs in desulfurization of fuels and extraction of natural products. The results from this study can be used to predict and understand the performance of DESs in various chemical processes where solvation interactions heavily influence outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call