Abstract

Model studies have demonstrated that electron shuttles (ES) such as dissolved organic matter (DOM) can participate in the reduction of organic contaminants; however, much uncertainty exists concerning the significance of this solution phase pathway for contaminant reduction in natural systems. To compare the identity and reactivity of ES in anaerobic sediments with those in model systems, two chemical probes (4-cyano-4'-aminoazobenzene (CNAAzB) either free or covalently bound to glass beads) were synthesized that allowed for differentiation between surface-associated and solution-phase electron-transfer processes. The feasibility of these chemical probes were demonstrated in abiotic model systems (Fe(II)/Fe(III) oxide) and biotic model systems (Fe(II)/Fe(III) oxide or river sediment amended with S. putrefaciens strain cells). Experiments in the abiotic systems revealed that the addition of model hydroquinones and chemically reduced DOM increased reduction rates of free CNAAzB, whereas no enhancement in reactivity was observed with the addition of model quinones or DOM. Bound CNAAzB was also reduced by model hydroquinones and reduced DOM--but not by model quinones and untreated DOM--in the abiotic model systems, indicating that Fe(II)/Fe(III) oxides do not function as a bulk reductant forthe reduction of ES. Addition of model quinones or untreated DOM to the biotic models systems with sediment increased reduction rates of bound CNAAzB, which correlated well with the dissolved organic carbon content. In natural sediment slurries, reduction rates of bound CNAAzB correlated well with parameters for organic carbon (OC) content of both sediments and supernatants. Our results support a scenario in which reducible organic contaminants will compete with iron oxides for the electron flow generated by the microbially mediated oxidation of organic carbon and subsequent reduction of quinone functional groups associated with DOM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.