Abstract

Humic substance (HS), as an aromatic compound, is the core product of aerobic fermentation. Denitrification-dependent degradation of aromatic compounds have been repeatedly observed in environment. However, few studies have elucidated the relationship between denitrification and aromatic HS during sludge aerobic fermentation. This study was conducted to investigate the effect of enhanced denitrification on aromatic HS formation. On the 24th day of sludge aerobic fermentation, five tests (CK, Run1, Run2, Run3 and Run4) were executed, and nitrate concentrations were adjusted to 480 ± 20, 500 ± 20, 1000 ± 20, 1500 ± 20 and 2000 ± 20 mg/kg with potassium nitrate, respectively. Analytical results demonstrated that nitrate addition increased denitrifying genes abundance and enhanced denitrification, which further reduced aromatic HS formation (p < 0.05). Especially in Run3, the concentrations of HS and humic acid on the 52nd day dramatically decreased by 12.9 % and 34.2 % in comparison with those on the 31st day. High-throughput sequencing revealed that enhanced denitrification effectively stimulated the metabolism of denitrifying microorganisms with aromatic-degrading capability. Co-occurring network analysis indicated that some keystone taxa of denitrification aromatic-degrading microorganisms involved in the conversion of nitrate to nitrite were the most crucial for enhancing denitrification and reducing aromatic HS formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.