Abstract

To explore the possible impact of 2-Phenylbenzimidazole-5-sulfonic acid (PBSA) on the function of a sunscreen, in this work we investigate the binding of copper metal ions (Cu2+) to PBSA. Due to the existence of an intrinsic interaction phenomenon between Cu2+ ions and PBSA molecules, the photoluminescence (PL) quenching arises owing to the charge transfer from PBSA to Cu2+ ions. The mechanism of fluorescence quenching is probed experimentally following excitation at 306 nm by evaluating various quenching parameters with the help of the Stern-Volmer plot. Through the assessment of the values of the Stern-Volmer constant ( ) and bimolecular quenching rate constant ( ), it is deduced that the dynamic mode of PL quenching is operative between PBSA and Cu2+ ions. We evaluate the number of binding sites (n = 1) that advocate the presence of a single binding site in PBSA for Cu2+ ions. The numerical value of standard Gibbs free energy change, ~ -27.485 kJ.mol-1 implies the spontaneous binding between Cu2+ ions and PBSA molecules. The results obtained give an insight into the mechanism of metal-induced PL quenching of water soluble PBSA sunscreen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call