Abstract
Carbon nanotubes (CNTs)/lead sulfide (PbS) quantum dots (QDs) nanohybrids have been synthesized through the controlled decoration of CNTs by PbS-QDs by means of the pulsed laser deposition technique. The size of the PbS-QDs and their surface coverage of the CNTs' surface are monitored through the number of laser ablation pulses. Here, while comparing both single-walled (SW) and double-walled (DW) CNTs based nanohybrids, focus is put on the investigation of their interfacial structure and the effect of inner tube. Anchoring PbS through direct sulfur-carbon chemical bonding between CNTs' outer wall and PbS-QDs, which are thought to be profitable for efficient charge transfer but not for charge transport along CNT's tube axis, are confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. In the case of double-walled CNTs (DWCNTs), inner tube remains unaffected by ablated PbS species, then it serves efficient conduction way for transferred photo-generated charges. This unique feature of the DWCNTs based nanohybrid, where the photocharges are generated by the chemically bonded PbS-QDs to the outer tube and then efficiently conveyed by the inner tube of the nanotubes, is highly likely at the origin of their significantly higher photo-activity (several hundred times than in SWCNTs-based nanohybrids).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.