Abstract

The need to accommodate power fluctuations intrinsic to high-renewable systems will demand in the future the implementation of large quantities of energy storage capacity. Microbial electromethanogenesis (EM) can potentially absorb the excess of renewable energy and store it as CH₄. However, it is still unknown how power fluctuations impact on the performance of EM systems. In this study, power gaps from 24 to 96 h were applied to two 0.5 L EM reactors to assess the effect of power interruptions on current density, methane production and current conversion efficiency. In addition, the cathodes were operated with and without external H₂ supplementation during the power-off periods to analyse how power outages affect the two main metabolic stages of the EM (i.e.: the hydrogenic and methanogenic steps).Methane production rates kept around 1000 mL per m2 of electrode and per day regardless of the duration of the power interruptions and of the supplementation of hydrogen. Interestingly, current density increased in the absence of hydrogen (averaged current density during hydrogen supplementation was 0.36 A·m−2, increasing up to 0.58 A·m−2 without hydrogen). However current was less efficiently used in the production of methane with no hydrogen supplementation. Nevertheless, when the electrical power was restored after the power interruption experiments, performance parameters were similar to those observed before. These results indicate that EM is resilient to power fluctuations, which reinforces the opportunity of using EM as a technology for renewable energy storage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call